spacer spacer Go to Kaye and Laby Home spacer
spacer
spacer spacer spacer
spacer
spacer
spacer
spacer spacer

You are here:

spacer

Chapter: 2 General physics
    Section: 2.6 Electricity and magnetism
        SubSection: 2.6.5 Dielectric properties of materials

spacer
spacer

spacer

« Previous Subsection

Next Subsection »

Unless otherwise stated this page contains Version 1.0 content (Read more about versions)

2.6.5 Dielectric properties of materials

The absolute complex permittivity of a material is represented by the symbol , where = ′ − j″. This is related to the dimensionless relative complex permittivity r, where r = r − jr, by the expression = 0r, 0 being the permittivity of free space, a fixed constant given approximately by 0 = 8.85 x 10−12 F m−1. In general, depends on temperature and, to a lesser extent, pressure. It is also frequency dependent, although ′ and ″ cannot vary independently with frequency, since their frequency variations are connected through the Kramers–Krönig relationship: a drop in ′ with increasing frequency is necessarily associated with a peak in ″. Except for exceedingly high applied fields, is independent of the magnitude of the applied electric field for all dielectric materials used in practice, excluding ferroelectrics.

A capacitor filled with a dielectric material has a real capacitance r times greater than would have a capacitor with the same electrodes in vacuum. The dielectric-filled capacitor would also have a power dissipation W per unit volume at each point when, resulting from an applied voltage, a sinusoidal electric field of frequency f and root-mean-square value E exists at that point. This power dissipation is given by W = 2πfE2. Thus ″ is a measure of the energy dissipation per period, and for this reason it is known as the loss-factor.

The complex permittivity is often represented in the Argand plane with ′ as abscissa and ″ as ordinate, giving a curve with frequency as parameter. The join of any point on this curve to the origin therefore represents the complex conjugate * of the complex permittivity where * = ′ + j″. Unfortunately, the use of the symbol * to represent complex permittivity is widespread and has become established in the literature, and care is needed if confusion over signs is to be avoided. The join to the origin makes an angle δ with the abscissa, such that tan δ = ″/ ′. Thus W may be rewritten as W = 2πfE2′ tan δ. Hence δ is known as the loss angle, and tan δ is known as the loss tangent.

The application of a sinusoidal voltage of root-mean-square value V to the dielectric-filled capacitor results in a current flow in the external circuit which leads the voltage by a phase angle or power-factor angle φ, where φ is the complement of δ. Thus, the power dissipation in the capacitor, given by IV cos φ, may also be expressed as IV sin δ. Since in most cases in engineering practice δ is small, sin δ tan δ and the power dissipation is given to a good approximation by IV tan δ. It should be noted that no such approximation is involved in the expression for W in the previous paragraph.

When the wavelength of electromagnetic radiation is in the optical region, the velocity v of propagation through a loss-free transmitting medium of refractive index n is given by v = c/n, where c is the velocity in free space. The velocity is also given by v = c/(μrr)1/2 where μr, is the relative permeability. Thus for loss-free non-magnetic materials, for which μr = 1, r′ = n2. However, in general losses do occur, and the material is characterized by a complex refractive index given by = njk, where k is the absorption coefficient. Then r = 2, or r′ – jr″, = (njk)2, from which it follows that r′ = n2k2 and r″ = 2nk. Nevertheless, when the loss is small, so that k << n, then r n2. The use of these relationships allows values of r at high frequencies to be derived from optical measurements. As the frequency is reduced, specially designed interferometers (infra-red), free radiation methods (sub-millimetric wavelengths), wave-guides, coaxial lines and resonant cavities (centimetric wavelengths), and Q meters and bridges (radio frequencies to d.c.) have all been used. Time-domain spectroscopy, involving an analysis of the response of the medium to a step-function field, is capable in principle, and has had some success in practice, in giving a rapid measurement of over a very wide frequency spectrum.

The relative permittivity is directly related to the electronic, atomic and orientational polarization of the material. The first two of these are induced by the applied field, and are caused by displacement of the electrons within the atom, and atoms within the molecule, respectively. The third only exists in polar materials, i.e. those with molecules having a permanent dipole moment. Electronic and atomic polarization are temperature independent, but orientational polarization, depending on the extent to which the applied field can order the permanent dipoles against the disordering effect of the thermal energy of their environment, varies inversely with absolute temperature. All of these polarization mechanisms can only operate up to a limiting frequency, after which a further frequency increase will result in their disappearance. Because of the spring-like nature of the forces involved, this is accompanied by an absorption of the resonance type for electronic and atomic polarization, but for orientational polarization the disappearance, accompanied by a broader peak in the loss factor, is more gradual, because the mechanism involved is of the relaxation type, and may involve a broad distribution of relaxation times. Indeed, the decline in ′ may be so gradual that ″ may appear almost constant, and be correspondingly small, over a wide frequency range. This applies particularly to some polymers commonly used in engineering practice, many of which are polar. Those which are non-polar, usually with r′< 2.5, show nearly constant values of ′ and ″ over the entire electrical frequency spectrum.

The frequency at which these mechanisms drop out is related to the inertia of the moving entities involved. Typically, electronic polarization persists until a frequency of about 1016 Hz, atomic polarization until about 1013 Hz, while the dispersion for orientational polarization may lie anywhere within a wide frequency range, say 102–1010 Hz, depending on the material and its temperature. In addition to these polarization mechanisms, the existence of interfacial effects such as macroscopic discontinuities in the material, or blocking at the electrodes, causes the trapping of charge carriers, and such phenomena, as well as the inclusion in the dielectric of impurities giving rise to conducting regions, result in behaviour classified under the general heading of Maxwell–Wagner effects. These give rise to an effective polarization and associated loss, the frequency behaviour of which is similar to that of orientational polarization, with a dispersion region which may lie in the region of 1 Hz or lower.

When orientational polarization is operative, it is usually the dominant polarization mechanism present. The classical theory of this mechanism is due to Debye. For a single relaxation time τ, the variation of r with angular frequency ω is given by the Debye equation, (r)/(s) = (1 − jωπ)/(l + ω2τ2), where s and are the relative permittivities at frequencies much lower and much higher (but not high enough to involve any reduction in atomic or electronic polarizations) respectively than the anomalous dispersion region. Equating real and imaginary parts gives

          (r) / (s) = 1/(1 + ω2τ2)   and   ″/(s) = ωτ/(1 + ω2τ2)

If ″ is plotted against ′, the Cole–Cole plot results. This is a semicircle if the Debye equation is obeyed. Frequently experimental results yield a circular arc, rather than a semicircle, with its centre below the abscissa. Such behaviour can be expressed as a suitable distribution of relaxation times, though no satisfactory physical reason for doing so has yet been established. There is a variety of other shapes obtained in practice, such as the skewed arc in which the high frequency end of the arc approximates to a straight line. Anything other than a perfect semi-circle is now taken as evidence of co-operative effects within the dielectric.

The permittivity of many substances changes not only with frequency and temperature, but also with specimen age and history. Two specimens of nominally the same material may have significantly different permittivities because of different manufacturing processes, different amounts of oxidation, and different inclusions, some of which might have been deliberately introduced, e.g. anti-oxidants. For such reasons, tables of values should be used as an indication of the magnitudes to be expected, and not as a source of precise data which can be repeated by accurate measurements on particular test specimens, except in cases in which the physical and chemical state of both the reference material and the test specimen are very closely specified. The properties of ferroelectric materials depend on so many factors that it is inappropriate to include them in tables of data. Generally, they have permittivities of the order of a thousand, strongly dependent on applied voltage and temperature, and exhibit considerable power loss.




References

C. J. F. Bötcher (1973) Dielectrics and Static Fields, Vol. 1, 2nd edn, Elsevier Scientific Publishing Company, Amsterdam.
C. J. F. Bötcher and P. Bordewijk (1978) Dielectrics in Time Dependent Fields, Vol. 2, 2nd edn, Elsevier Scientific Publishing Company, Amsterdam.
V. V. Daniel (1967) Dielectric Relaxation, Academic Press, London.
H. Fröhlich (1958) Theory of Dielectrics, 2nd edn, Clarendon Press, Oxford.
Nora E. Hill, Worth E. Vaughan, A. H. Price, Mansel Davies (1969) Dielectric Properties and Molecular Behaviour, van Nostrand Reinhold Company Ltd., London.
A. R. von Hippel (1954) Dielectrics and Waves, Chapman & Hall, London.


Tables of relative permittivity and loss tangent

Temperature (t) is in °C, and frequency (f) in Hz. Temperature coefficient of r′ is denoted by a = 105 dr′/r′ dt and density in g cm−3 by d. For non-cubic crystals, the symbols , ||, indicate measurements with field respectively perpendicular to and parallel to the c-axis. Ranges of quantities are indicated by the numerical limits of the range, separated by a solidus. For commercial materials, the values should be regarded as examples only, since some vary greatly with composition and purity. This applies also to the loss angle of some pure materials, which may depend on traces of impurity. The ranges of r′ and tan δ, however, are intended to indicate not these variations, but only the variation within the stated ranges of temperature and/or frequency. However, because data relating to different temperatures and frequencies often have to be taken from more than one source, even for what is nominally the same material, it is commonly impossible to be certain of the cause of the variations.



Solids

Material

Remarks t/°C

f

r´

104 × tan δ

 

 

 

 

 

 

Cellulose (see also paper)

 

 

 

 

 

    Cellophane  .  .  .  .  .  .

  unplasticized

20

50 Hz/1 MHz

7.6/6.7

100/650

 

 

−30/70

50 Hz

7.2/8.0

100/150

    Paper fibres   .  .  .  .  .

  calculated

20

50 Hz

6.5

50

 

 

 

 

 

 

Ceramics

 

 

 

 

 

    Alumina  .  .  .  .  .  .  .

  pure

20/100

50 Hz/1 MHz

  8.5

20/5

 

  pure, porosity 1%

20

1 MHz

10.8

 

    Calcium titanate     .  .

  a =  −200

20

1 MHz

150    

3

    Lead zirconate    .  .  .

  a =  +140

20

1 MHz

110    

30

    Magnesium titanate   .

 

20/150

50 Hz/1 MHz

14  

1/4

    Porcelain   .  .  .  .  .  .

  h.v. electrical

20/100

50 Hz/1 MHz

   5.5

300/80

    Rutile      .  .  .  .  .  .  .

  a =  −80

20

1 MHz/1 GHz

80  

3/8

 

  a =  −40

20

1 MHz/1 GHz

40  

15/30

 

  a =  −2

20

1 MHz/100 MHz

12  

30

 

  a =  +6

20

1 MHz/100 MHz

15  

  1

    Steatite   .  .  .  .  .  .  .

  a =  +13

20

1 MHz/1 GHz

6

20

        (low loss) .  .  .  .  .

  a =  +13

20

1 MHz/1 GHz

6

  2

    Strontium titanate  .  .

  a =  −300

20

1 MHz

200    

  5

    Strontium zirconate  .

  a =  +12

20

1 MHz

38  

  3

 

 

 

 

 

 

Crystals (single, inorganic)

 

 

 

 

 

    Alkali halides

 

 

 

 

 

    LiF     .  .  .  .  .  .  .

 

20/25

1 kHz/10 GHz

8.9/9.1

  2

    LiCl    .  .  .  .  .  .  .

 

20

1 kHz/1 MHz

11.8/11.0

 

    LiBr    .  .  .  .  .  .  .

 

20

1 kHz/1 MHz

13.2/12.1

 

    LiI       .  .  .  .  .  .  .

 

20

1 kHz/1 MHz

16.8/11.0

 

    NaF    .  .  .  .  .  .  .

 

20

1 kHz/1 MHz

5.1/6.0

 

    NaCl   .  .  .  .  .  .  .

 

20/25

1 kHz/10 GHz

6.1/5.9

5/1

    NaBr   .  .  .  .  .  .  .

 

20

1 kHz/1 MHz

6.5/6.0

 

    NaI     .  .  .  .  .  .  .

 

20

1 kHz/1 MHz

7.3/6.6

 

    KF      .  .  .  .  .  .  .

 

20

1 kHz/1 MHz

5.3/6.0

 

    KCl    .  .  .  .  .  .  .

 

20

1 kHz/10 GHz

4.9/4.8

 

    KBr    .  .  .  .  .  .  .

 

20/25

1 kHz/10 GHz

5.0/4.9

2/7

    KI      .  .  .  .  .  .  .

 

20

1 kHz/1 MHz

5.1/5.0

 

    RbF   .  .  .  .  .  .  .

 

20

1 kHz

6.5

 

    RbCl    .  .  .  .  .  .  .  .

 

20

1 kHz

4.9

 

    RbBr    .  .  .  .  .  .  .  .

 

20

1 kHz

4.9

 

    RbI      .  .  .  .  .  .  .  .

 

20

1 kHz

4.9

 

    Calcite .  .  .  .  .  .  .  .

  CaCO3

20

1 kHz/10 kHz

8.5

 

 

            ||

20

1 kHz/10 kHz

8.0

 

    Diamond    .  .  .  .  .  .

  C

20

500 Hz/100 MHz

5.7/5.5

 

    Fluorite   .  .  .  .  .  .  .

  CaF2

20

10 kHz/2 MHz

7.4/6.8

 

    Gallium Arsenide .  .  .

 

20

1 kHz

12     

 

    Germanium   .  .  .  .  .

 

20

1 kHz

16.3  

 

    Iodine     .  .  .  .  .  .  .

 

17/22

100 MHz

4.0

 

    Mica, muscovite (best)

 

20/100

50 Hz/100 MHz

7.0

10/2

    Periclase    .  .  .  .  .  .

  MgO

25

100 Hz/100 MHz

9.7

3

    Quartz    .  .  .  .  .  .  .

  SiO2     

20/25

1 kHz/35 MHz

4.43/4.43

−/0.4

 

              ||

20/25

1 kHz/35 MHz

4.63/4.63

−/0.3

    Ruby   .  .  .  .  .  .  .  .

  Al2O3

17/22

10 kHz

13.3  

 

 

 

17/22

10 kHz

11.3  

 

    Rutile  .  .  .  .  .  .  .  .

  TiO2      

20

50 Hz/100 MHz

86    

100/2

 

              ||

17/22

100 MHz

170      

 

    Sapphire   .  .  .  .  .  .

   Al2O3 

20

50 Hz/1 GHz

9.4

2

 

             ||

20

50 Hz/1 GHz

11.6  

2

    Selenium   .  .  .  .  .  .

 

17/22

100 MHz

6.6

 

    Silicon    .  .  .  .  .  .  .

 

20

1 kHz

11.7  

 

    Sulphur  .  .  .  .  .  .  .

  rhombic  (100)

25

1 kHz

3.8

5

 

              (010)

25

1 kHz

4.0

5

 

              (001)

25

1 kHz

4.4

5

    Urea      .  .  .  .  .  .  .

  CO(NH2)2

17/22

400 MHz

3.5

 

    Zircon    .  .  .  .  .  .  .

  ZrSiO, ||

17/22

100 MHz

12    

 

Glasses

 

 

 

 

 

    Borosilicate  .  .  .  .  .

  normal

20

1 kHz/1 MHz

5.3

50/40

 

  low alkali

20

1 MHz

5   

30

 

  very low alkali

20

50 Hz/100 MHz

4   

15/5

    Fused quartz   .  .  .  .

 

20/150

50 Hz/100 MHz

3.8

10/1

    Lead      .  .  .  .  .  .  .

 

20

1 kHz/1 MHz

6.9

17/13

    Soda      .  .  .  .  .  .  .

  average

20

1 MHz/100 MHz

7.5

100/80

 

 

 

 

 

 

Minerals

 

 

 

 

 

    Amber    .  .  .  .  .  .  .

 

20

1 MHz/3 GHz

2.8/2.6

2/90

    Asbestos (chrysotile)

  purified, 50% R.H.

25

50 Hz/1 MHz

5.8/3.1

1800/250

 

  board

20

1 MHz

3

2200

    Bitumen  .  .  .  .  .  .  .

  Gilsonite

25

50 Hz/100 MHz

2.7/2.55

60/10

 

 

20

1 kHz

3.5

300

    Granite   .  .  .  .  .  .  .

 

20

1 MHz

8   

 

    Gypsum  .  .  .  .  .  .  .

 

20

10 kHz

5.7

 

    Marble   .  .  .  .  .  .  .

  pure dry

20

1 MHz

8   

400

    Sand   .  .  .  .  .  .  .  .

  dry

20

1 MHz

2.5

 

 

  15% water

20

1 MHz

9   

 

    Sandstone  .  .  .  .  .  .

 

20

1 MHz

10     

 

    Soil   .  .  .  .  .  .  .  .  .

  dry

20

1 MHz

3   

 

 

  moist

20

1 MHz

10     

 

    Sulphur   .  .  .  .  .  .  .

  cast

20

3 GHz/10 GHz

3.4

7/14

 

 

 

 

 

 

Paper and Pressboard

 

 

 

 

 

    (see also cellulose)

 

 

 

 

 

Unimpregnated, dry

 

 

 

 

 

    Kraft (tissue)      .  .  .

  d = 0.8

20/90

1 kHz

1.8

10/15

 

  d = 1.2

20/90

1 kHz

3.0

25/35

    Rag (cotton)      .  .  .

  d = 0.6

20/90

50 Hz/50 kHz

1.7

8/65

Impregnated, mineral oil

 

 

 

 

 

    (εr´ = 2.2)

 

 

 

 

 

    Kraft (tissue)     .  .  .

  d = 0.9

20

50 Hz

3.6

22

 

  d = 1.1

20

50 Hz

4.3

27

    Rag (cotton)      .  .  .

  d = 0.9

20

50 Hz

3.5

13

 

  d = 1.1

20

50 Hz

4.2

18

Impregnated

 

 

 

 

 

         (Pentachlordiphenyl)

.

 

 

 

 

    Kraft (tissue)

  d = 0.9

20

50 Hz

5.7

33

 

  d = 1.1

20

50 Hz

6.0

39

Fibre    .   .  .  .  .  .  .  .

 

20

1 MHz

4.5

500

Pressboard    .  .  .  .  .

  dry d = 0.8

20

50 Hz

3.2

80

 

 

 

 

 

 

Plastics (non-polar,

 

 

 

 

 

          synthetic)

 

 

 

 

 

    Poly-

 

 

 

 

 

        ethylene    .  .  .  .

 

20

50 Hz/1 GHz

2.3

2/3

        isobutylene  .  .  .

 

20

50 Hz/3 GHz

2.2

2/5

        4-methylpentene

 

 

 

 

 

        (TPX)      .  .  .  . 

 

20

100 Hz/10 kHz

2.1

2/1

        (dimethyl)

 

 

 

 

 

        phenyloxide (PPO)

 

25

100 Hz/1 MHz

2.6

4/7

        propylene   .  .  .  .

 

20

50 Hz/1 MHz

2.2

5

        styrene    .  .  .  .  .

 

20

50 Hz/1 GHz

2.6

2/5

        tetrafluoroethylene

 

 

 

 

 

        (PTFE)      .  .  .  .

  teflon

20

50 Hz/3 GHz

2.1

2

 

 

 

 

 

 

Plastics (polar, synthetic)

 

 

 

 

 

    Poly-

 

 

 

 

 

        amides    .  .  .  .  .

  typical Nylon

20

50 Hz/100 MHz

4/3

200

        carbonates    .  .  .

  typical

20

50 Hz/1 MHz

3.2/3.0

10/100

        ethyleneterephthalate

 

20

50 Hz/100 MHz

3.2/2.9

20/150

        imides     .  .  .  .  .

  typical

20

1 MHz

3.4

 

        methylmethacrylate

 

20

50 Hz/100 MHz

3.4/2.6

600/60

        vinylcarbazole  .  .

 

20

50 Hz/100 MHz

2.8

5/10

        vinylchloride .  .  .

  unplasticized

20

50 Hz/100 MHz

3.2/2.8

200/100

Plastics (miscellaneous)

 

 

 

 

 

    Aniline resin

  unfilled

20

3 GHz

3.5

500

 

  paper filled

20

1 MHz/1 GHz

5/4

600/300

 

 

100  

1 MHz

6   

800

    Cellulose acetate

 

20

1 MHz/1 GHz

3.5

300/400

    Cellulose triacetate

 

20

50 Hz/100 MHz

3.8/3.2

100/300

    Ebonite

  unfilled

20

1 kHz/1 GHz

3/2.7

90/30

 

  filled (MgCO3)

20

50 kHz/1 GHz

4.1/3.8

100/180

    Epoxy resin

 

25

1 kHz/100 MHz

3.6/3.5

200

    Melamine resin

 

20

3 GHz

   4.7   

400

    Phenolic resin

  fabric filled

20

1 MHz

5.5

500

 

  paper filled

20

1 MHz/1 GHz

5   

300/800

 

 

140  

1 MHz/10 MHz

6   

800/400

 

  wood filled

20

1 MHz

5   

400

    Urea resin

  paper filled

20

1 MHz

6   

300

    Vinyl acetate (poly-)

  plasticized

20

1 MHz/10 MHz

4   

500

    Vinyl chloride (poly-)

  plasticized

20

1 MHz/10 MHz

4   

600

    (PVC)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rubbers

 

 

 

 

 

    Natural

  crepe

20/80

1 MHz/10 MHz

2.4

15/100

 

  vulcan, soft

20

1 MHz/10 MHz

3.2

280/200

    Butadiene/styrene

  unfilled

20/80

50 Hz/100 MHz

2.5

5/70

    (GR-S)

  compounded

20/80

50 Hz/100 MHz

2.5

10/200

    Butyl

  unfilled

20

50 Hz/100 MHz

2.4

35/10

    Chloroprene

  Neoprene

20

1 kHz/1 MHz

6.5/5.7

300/900

    Silicone

  filled 67% TiO2

20

50 Hz/100 MHz

8.6/8.5

50/10

    Silicone

  unfilled

25

1 kHz/100 MHz

3.2/3.1

 

 

 

 

 

 

 

 

 

 

 

 

 

Waxes, etc.

 

 

 

 

 

    Chlornaphthalene

 

 

 

 

 

    (tri and tetrachlor-)

 

20

50 Hz/100 MHz

5.4/4.2

7/2700

    Ozokerite

 

20

50 Hz/100 MHz

2.3

5/10

    Paraffin wax

 

20

1 MHz/1 GHz

2.2

2

    Petroleum jelly

 

20/60

50 Hz

2.1/1.9

1/5

    Rosin

  colophony

20

3 GHz

2.4

6

 

 

 

 

 

 

 

 

 

 

 

 

Wood (% water)

 

 

 

 

 

    Balsa 0%

 

20

50 Hz/3 GHz

1.4/1.2

40/140

    Beech 16%

  d = 0.62

20

1 MHz/100 MHz

9.4/8.5

580/830

    Birch 10%

  d = 0.63

20

1 MHz/100 MHz

3.1

400/800

    Douglas fir 11%

  d = 0.45

15

1 MHz/10 MHz

3.2

520/810

        compressed

  d = 0.64

15

1 MHz/10 MHz

4.3

570/950

    Scots pine 15%

  d = 0.61

20

1 MHz/100 MHz

8.2/7.3

590/940

    Walnut 0%

 

20

10 MHz

2

350

    Walnut 17%

 

20

10 MHz

5

1400

    Whitewood 10%

  American

20

1 MHz/100 MHz

3

400/750

 

 

 

 

 

 

 

 

 

 

 

 




References

CRC Handbook of Chemistry and Physics (1983), CRC Press Inc., Florida.
Handbook of the American Institute of Physics (1963) 2nd edn, McGraw-Hill Book Co, New York.
A. R. von Hippel (1954) Dielectric Materials and Applications, Chapman & Hall, London.
The International Critical Tables.
K. F. Young and H. P. R. Frederikse (1973) Compilation of the Static Dielectric Constant of Inorganic Solids, J. Phys. Chem. Ref. Data, 2(2), 313–410.
R. G. Jones (1976) J. Phys. D: Appl. Phys., 9, 819–27.




Liquids

The permittivities in this table, except when a frequency is stated, are ‘static’ values, relating to frequencies high enough to exclude ionic conductivity, but below any region of dispersion. For non-polar liquids (r 2) the lower limit depends only upon ionic impurities, while the higher is usually above 10 GHz. Within these limits, the permittivity is constant, and the loss unlikely to exceed a few times 10−4. For polar liquids, denoted by ‘P’, the lower frequency limit depends both upon purity and the intrinsic dissociation of the liquid, while the upper limit varies sharply with temperature. The two limits may overlap, and the permittivity is then nowhere constant, nor the loss tangent small. For these reasons, frequency and loss tangent are quoted only for a few liquids of controlled purity which are used for electrical purposes. More extensive data, and on many more liquids, are given in the references below. The permittivity of liquids is easier to determine accurately than that of solids, and probable accuracy is indicated by the number of places quoted in the Table. Temperature coefficients (a = 105 dr′/r′ dt) are given, but their accuracy is sometimes low.



Material

Remarks t/°C

f

r´

104 × tan δ

 

 

 

 

 

 

Castor oil   .  .  .  .  .  .  .  .

 

20

1 kHz

4.5

 

Chlordiphenyl (tri)  .  .  .  .

 

−10/100

50 Hz/20 kHz

7/5

2000/2

                  (penta-) .  .

 

0/100

50 Hz

5.2/4.3

  700/3

Parafin oil  .  .  .  .  .  .  .  .

  medicinal

20

1 kHz

2.2

1

Silicone fluid    .  .  .  .  .  .

  0.65 cS

20

50 Hz/3 GHz

2.2

2/19

 

  1000 cS

20

50 Hz/3 GHz

2.78/2.74

1/100

Transformer oil   .  .  .  .  .

  BS 138

20

50 MHz/100 GHz

2.2

1/42

 

 

20

100 MHz/10 GHz

2.2

42/8

 

 

 

 

 

 


Material

t/°C

r´

a

 

 

 

 

Alcohols (primary)

 

 

 

Methanol

25

32.65 P

− 588  

Ethanol

25

24.51 P

− 612  

Propanol

25

20.51 P

− 683  

Butanol

25

17.59 P

− 733  

Pentanol

25

15.09 P

− 775  

Hexanol

25

13.3 P 

− 806  

 

 

 

 

Hydrocarbons

 

 

 

n-Pentane

20

1.84

− 87  

n-Hexane

20

1.89

− 82  

n-Heptane

20

1.92

− 73  

n-Octane

20

1.95

− 67  

n-Nonane

20

1.97

− 68  

n-Decane

20

1.99

− 65  

n-Undecane

20

2.00

− 62  

n-Dodecane

20

2.01

− 60  

Benzene

20

  2.284

− 88  

Cyclopentane

20

1.96

 

Cyclohexane

20

  2.025

− 79  

Toulene

20

2.39

− 102  

     
 

 

 

 

 

(Chloro/Fluoro)-    
 
  hydrocarbons    
 

CCl4

20

2.24

− 89  

CCl3F

29

2.28

 

CCl2F2

29

2.13

 

CClF3

−30  

2.3  

 

CHCl3

20

4.80 P

− 368  

CHCl2F

28

5.34 P

 

CHClF2

24

6.11 P

 

(—CCl2F)2 25 2.52    

(—CClF2)2

25

2.26  

 

(—CH2Cl)2

20

10.66 P

− 550  

(CCl2)2

25

2.30  

− 85  

CCl2CHCl

20

3.4 P

 

F-pentane

20

 4.24 P

 

F-benzene

25

 5.42 P

 

Cl-benzene

20

 5.70 P

− 229  

       

Miscellaneous

 

 

 

Aniline

20

6.89

−341  

Acetone

25

20.7 P

−472  

Diethylketone

20

17.0 P

−520  

Diethylether

20

    4.34 P  

− 500  

Cyclohexanone

20

18.3 P

 

Nitrobenzene

25

34.8 P

− 518  

CS2

20

2.64

− 101  

 

 

 

 

Liquid gases

T/K

 

 

Argon

82

1.53

− 220  

Helium

      4.19

  1.048

 

   ,,

       2.06

  1.055

 

Hydrogen

    20.4

1.22

− 280  

Nitrogen

  70

1.45

− 200  

Oxygen

  80

1.50

− 160  

Many of these liquids are hazardous, flammable or toxic. Chemical safety manuals should be consulted before using them.


References

Dielectric Constants of Pure Liquids (1951) National Bureau of Standards Circular No. 514.
Dielectric Dispersion Data for Pure Liquids and Dilute Solutions (1958) National Bureau of Standards Circular No. 589.
S. Jenkins, R. N. Clarke, Measured values and uncertainties for the complex permittivity of selected organic reference liquids at 20 to 30°C and frequencies up to 3 GHz, (NPL Report DES 109).
H. Kienitz and K. N. Marsh (1981) Recommendation Reference Materials for Realization of Physicochemical Properties, Pure & Appl. Chem. 53, 1847–1862.




Water

Water is strongly polar, with a region of dispersion, at 20 °C, centred around 17 GHz. It is also intrinsically dissociated, so that even de-ionized water cannot be treated as a dielectric at frequencies much below 1 MHz. Measurements at the high frequencies of the dispersion range contain, before about 1953, many errors shown by values of ′ and ″ mutually inconsistent with the simple Debye equations. It is established that water obeys these with some accuracy, the value of the dispersion coefficient α in the Cole–Cole equation not exceeding 0.05.

At frequencies higher than about 1 MHz (where the loss tangent passes through a minimum of about 5 × 10−3) values of ′ and ″ can be calculated from the Debye equations given in the introduction to this section, with accuracy better than is obtainable by interpolation in a table. The necessary values of s, and τ follow, chosen to give the best fit with internally consistent data.

The static relative permittivity as a function of temperature, within the range 0–60°C, is given with an accuracy of ±0.1 unit by

   s = 88.15 – 41.4θ + 13.1θ2 − 4.6θ3

where θ = Celsius temperature/100°C.


The relaxation time as a function of temperature is as follows, with an accuracy of about ±2%:


t/°C

0

10

20

30

40

50

60

τ/ps

17.7

12.6

9.2

7.1

5.7

4.8

3.9


The ‘infinite frequency’ dielectric constant, , occurs in the infra-red, and cannot be directly measured electrically. A value of 5.0 is appropriate for use with the foregoing data. r decreases continuously from this value throughout the infra-red to a value of 1.8 in the optical region. The Debye equations therefore become increasingly inaccurate for ωτ  >> 1.




References

Dielectric Dispersion Data for Pure Liquids (1958) National Bureau of Standards Circular No. 589, Table 3.
E. H. Grant and R. Shack (1967) Br. J. Appl. Phys. 18, 1807.
J. B. Hasted (1975) Aqueous Dielectrics, Chapman & Hall, London.
U. Kaatze and V. Uhlendorf (1981) The Dielectric Properties of Water at Microwave Frequencies, Z. Phys. Neue, Folge, 126, 151–165.




Gases and vapours

The values relate, excepting the final entry, to a pressure of one standard atmosphere, and hold for all frequencies below the start of the infra-red spectrum. Other values may be calculated over a limited range of temperature and pressure, for non-polar permanent gases, by assuming that (r – 1) is proportional to density. This does not hold for polar gases, but if the polarity is strong (e.g. water vapour) a close approximation is

(r − 1) pressure/(absolute temperature)2

provided that the vapour is not near its condensation point, under the conditions either of the data used, or of the desired result. This relation can safely be used, for example, to obtain values for damp air, the densities and pressures involved being then the partial values, and the contributions from the two components additive. The relation should not be applied to mixtures of two polar vapours.

Values of relative permittivity may also be obtained from the data on refractive indices at radio frequencies by using the relation μrr = n2 which applies to non-absorbing gases. μr = 1 for all gases except O2 where μr = 1 + 1.9 × 10−6.




Relative permittivity of gases and vapours

Material

t/°C

104 (r − 1)

Material t/°C

104 (r − 1)

 

 

 

 

 

 

Air dry    .  .  .  .  .  .  .

20

5.361

  Nitrous oxide  .  .  .  .  .  .

  25

10.3

Nitrogen     .  .  .  .  .  .

20

5.474

  Ethylene    .  .  .  .  .  .  .  .

  25

13.2

Oxygen   .  .  .  .  .  .  .

20

4.943

  Carbon disulphide .  .  .  .

  29

29.0

Argon  .  .  .  .  .  .  .  .

20

5.177

  Benzene   .  .  .  .  .  .  .  .

100

32.7

Hydrogen   .  .  .  .  .  .

  0

2.72 

  Methanol  .  .  .  .  .  .  .  .

100

57   

Deuterium  .  .  .  .  .  .

  0

2.696

  Ethanol  .  .  .  .  .  .  .  .  .

100

78   

Helium    .  .  .  .  .  .  .

  0

0.7   

  Ammonia  .  .  .  .  .  .  .  .

    1

71   

Neon   .  .  .  .  .  .  .  .

  0

1.3   

  Sulphur dioxide  .  .  .  .  .

  22

82  

Carbon dioxide  .  .  .

20

9.216

  Water    .  .  .  .  .  .  .  .  .

100

60  

Carbon monoxide .  .

25

6.4   

  Water (10 mmHg)    .  .  .

  20

      1.244

 

 

 

 

 

 




R.N.Clarke

« Previous Subsection

Next Subsection »

spacer


spacer
spacer
spacer spacer spacer

Home | About | Table of Contents | Advanced Search | Copyright | Feedback | Privacy | ^ Top of Page ^

spacer

This site is hosted and maintained by the National Physical Laboratory © 2014.

spacer